Blow-Up Solutions to 3D Euler are Hydrodynamically Unstable

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Time Blow-up for the 3D Incompressible Euler Equations

We prove the finite time blow-up for solutions of the 3D incompressible Euler equations, which happens along the fluid particle trajectories starting from a set of points. This set is specified by the relation between the deformation tensor and the Hessian of pressure both coupled with the vorticity directions, associated with the initial data. As a corollary of this result we prove the finite ...

متن کامل

Blow-up or no blow-up? A unified computational and analytic approach to 3D incompressible Euler and Navier–Stokes equations

Whether the 3D incompressible Euler and Navier–Stokes equations can develop a finite-time singularity from smooth initial data with finite energy has been one of the most long-standing open questions. We review some recent theoretical and computational studies which show that there is a subtle dynamic depletion of nonlinear vortex stretching due to local geometric regularity of vortex filaments...

متن کامل

Blow - up Solutions for Gkdv Equations with K Blow

In this paper we consider the slightly L-supercritical gKdV equations ∂tu + (uxx + u|u|)x = 0, with the nonlinearity 5 < p < 5 + ε and 0 < ε ≪ 1 . In the previous paper [10] we know that there exists an stable selfsimilar blow-up dynamics for slightly L-supercritical gKdV equations. Such solution can be viewed as solutions with single blow-up point. In this paper we will prove the existence of ...

متن کامل

Exact, infinite energy, blow-up solutions of the three-dimensional Euler equations

For the class of cylindrically symmetric velocity fields U(r, z, t) = {u(r, t), v(r, t), zγ (r, t)}, two infinite energy exact solutions of the three-dimensional incompressible Euler equations are exhibited that blow up at every point in space in finite time. The first solution is embedded within the second as a special case and in both cases v = 0. Both solutions represent three-dimensional vo...

متن کامل

Finite Time Blow-up of a 3D Model for Incompressible Euler Equations

We investigate the role of convection on its large time behavior of 3D incompressible Euler equations. In [15], we constructed a new 3D model by neglecting the convection term from the reformulated axisymmetric Navier-Stokes equations. This model preserves almost all the properties of the full Navier-Stokes equations, including an energy identity for smooth solutions. The numerical evidence pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 2020

ISSN: 0010-3616,1432-0916

DOI: 10.1007/s00220-020-03790-5